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Outline of this talk Lok Alames
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B What is quantum friction?
B Quantum friction from non-equilibrium FDT
B Quantum friction from t-dep. perturbation theory

B Key results

@ Quantum friction depends on the way the atom is boosted

@ Quantum friction is cubic in velocity
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An intuitive picture
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An intuitive picture
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Photons and plasmon field
perceived with a Doppler
shifted frequency
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A variety of predictions
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Zero temperature atom-surface quantum friction
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Comments

Approach similar to the calculations of vdW forces
but with mistakes

Two-state atom with a transition dipole

moment normal to a metal surface

Master-equation approach for multilevel atoms
and quantum regression “theorem”.

Perturbation theory using Fermi’s golden rule.
Harmonic oscillator.

Relativistic calculations and analytical/numerical
evaluation of the Green’s tensor

Fluctuation-dissipation theorem applied to the
dipole atom as well as to the electric field
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Fluctuational electrodynamics - os aames

A

Ffric (t) — <a(t) : 83:E(ra (t)a t)> Fext (t)

@ Prescribed motion _
(ZUO) Ya, Za) for ¢ < ta maféa(t) — Fext(t) + Fg;(t)
rq(t) = {

(Taccel(t), Ya, 2q) forty, <t <0
(g + Vat, Ya, 2q) fort > 0

@ Stationary (¢ — o0o) frictional force

@ No general results for non-equilibrium state p(oo) = 777
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Non-equilibrium FDT - Los Alamos

2wa ~

; d- - E(r,(t),t)

@ Dipole moment d = dg G(t) + waq(t) =

@ Dynamic polarizability of moving atom
—1

20, d’k
—d;d,; [—wZ + w? — /(27r) d -Gk,w+kzv,)-d

“ h

Non-equilibrium FDT in classical
models have the same form

J(w;vg) :/ 'k O(w) — O(w + kpvy)] a(w;ve) - Gk, w + kpvy) - o (w;vz).

(2m)?
@ Using S(w; v, )one can obtains | Fie &~ — A5h o (24,0) A’ (0)@
M\W, Vg ric 2567T2€0 I\~a> I Zg
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Other approach: pert. theory - icaamos

@ Multi-level atom, initially in its ground state ™, T
@ Polariton field (EM+matter) also in its ground state

p(0) = |g) (9] ® |vac)(vac| S

(20, Ya, 2a) for t < t,
@ Prescribed motion 14(t) = 9 (zaccel(t), Ya, za) for tqa <t <0
(g + V2t, Ya, 2q) for t > 0

@ Our goal is to calculate:

radiative frictional power P = —v - F

radiative frictional force F' F ‘ Fext
V
—
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Transition amplitudes Lot Alamos

@ Polariton field Hamiltonian (near-field regime)

A wl'w?/2
(7, t) = / d’k / dw (Gt brew exp(ik - ¥ — iwt) + hic)) g, = VL \/ h
Ty

—kz
e
22k

. 2
w? + wl’ — wg

@ Atom-field coupling  V(t) = —D;(t)E;(7(t), t) = D;0,®(7(t), t)

@ Atom-field states |¥(t)) = (1 + ¢ (t))|g, vac) + Z/dB (t) + 7 (1)) |7, &)

(third order expansion in powers of d) i / A3k, d3rq 2 (t)|g, K1ka) + ..

e (t)

transition amplitudes for states with
n-photons in the p-th pert. order

I

|

|

I —

! e (g,vac|V(t)|7, k) =id(7- k)dx exp[—i(Q + w)t + ik - r(t)]

: — (1], Hl" )|g, k1K2) =1d (7] - ky )i, il —wttikir(t) 50 k)

|

: +1d (7 Fa), X005 (x — ).
i (i, vac|V (t)|g, k) =id(7- k) n exp[i(2 —w)t + ik - r(t)] .
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Frictional force and power Los Alamos

@ Quantum friction force operator:

P, =— hm
t—>oo

- To second order in perturbation theory, the F?) exp(—2Q2z/v,)
force and power are exponentially small P®) exp(—2€2z/v;)

- To fourth order in perturbation theory, great care must be exercised
because of possible interferences between the amplitudes cq(,bp ) (¢)
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Ideal case: constant v always - oames

We consider first the idealized case of the atom moving at constant
velocity at all times r(t) = vt, V¢

@ One-photon power dissipated 4

PV = 2 Relel " (0)e” (0] » —y5t P

hence, it is exponentially suppressed

@ Two-photon power dissipated s

4
4 2)2
P( ) — \c( )\ Z10
3
@ Frictional force  F (1) To
22
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Boosting the atom: v(t) Los Alamos

We now consider the more realistic case in which the atom is boosted
from its initial rest position to a final state in which it moves at

constant velocity
2t x)y/vr
Curve z(t) z(t)
thick black v/(1+eY7) v 1/(2+ 2cosht/7) 15 /
0 fort < —71 0 fort < —71 /
thin blue (t+7)v/(27) for—T <t <T v/(2r) for—rT<t<7 1 ‘
v fort > 71 0 fort > 7 ’
0 fort<?0 S
dashed gray o va(t) 7 /
’ v fort >0 / U/

@ Two-photon power P2(4) — P4 + Pg

4, .
Py o< v is independent of the boost <«—

Pg o v f(7) depends on the boost, and is exponentially
suppressed for adiabatic boosts wr > 1

@ One-photon power P1(4) — — Pp <«— subtle cancellation!

Hence, perturbation theory also gives cubic-in-v quantum friction
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Orders of magnitude (o hranas

@ Near-field quantum friction
surface’s electrical resistivity

/ e static atomic polarizability
45hp*ad v3

51273 210

@ Example: ground state °’Rb flying over a silicon surface

Ffric ~

ap = 5.26 x 107 Hz/(V/m)?
,0:64><102§2m Fe. %—13X1O_20N
v, = 340 m/s = Fric '

2o = 10 nm

@ How to enhance it? How to measure it?

- excited atomic states? - atomic interferometry?
- higher velocities? - near-field AFM?

- materials with higher resistivities? -???

- macroscopic bodies?

-?7?
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Conclusions - Los Alamos

@ Atom-surface quantum friction from general non-equilibrium stat.
mech.

@ Non-equilibrium FDT predicts a cubic-in-v frictional force

@ Atom-surface quantum friction from t-dependent perturbation theory

- Dependency on boost history

- Subtle cancellation between one- and two-photon dissipated
power. This results, again, in cubic-in-v quantum friction

@ At high temperatures (classical limit), linear-in-v frictional force

@ Same analysis possible for quantum friction between macroscopic

bodies
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